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I
n electrodynamics, a susceptibility tensor
describes material's response to applied
electromagnetic fields. This tensor con-

tains all the information required for de-
scription of electromagnetic properties of
the material. Generally, it can be obtained
either empirically or with classical or quan-
tum models and depends on all time-space
coordinates.1 Moreover, the evaluation of
this material response at a particular point
in time and space requires the knowledge
of all the history of the system (determined
by chromatic dispersion) and the fields in
the surroundings (determined by spatial
dispersion). In optics, spatial dispersion is
muchweaker than chromatic one since char-
acteristic dimensions of an electronic system
interacting with light, e.g., an atom or a
molecule, are much smaller than an optical
wavelength, while their energies may be
comparable.2 Typical material systems pro-
vide sufficient time delay and/or frequency
filtering to an incident field that can be
describedby thewavelength-dependent real
and imaginary parts of the refractive index,
respectively. At the same time, these systems

may be almost insensitive to spatial orienta-
tion of the microscopic constituents with
respect to any illumination angle, if polariza-
tion selection rules are ignored. Nevertheless,
spatial dispersion can be important when
light interacts with bulk material objects
and gives rise to new phenomena, such as,
e.g., gyrotropy.2

Recently, various nanostructured media
such as surfaces, films, and metamaterials,3

have been used to control light�matter
interaction and to achieve advanced nano-
photonic functionalities4 and transformation-
optics designs.5 Inmany cases, nanostructured
media are inherently spatially dispersive;this
effect may originate either from the non-
local dispersion of material components
at the nanoscle2 or from collective response
of strongly coupled objects.6,7 The material
contribution can in turn be approximately
subdivided in classical nonlocality due to col-
lective electronic effects and quantum one
due tofinite sizeof theelectronwave function.
Classically, nonlocalities in optical response

of a material originate from collective behav-
ior of electron plasma, whose evolution can
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ABSTRACT Nonlocal optical response of materials, important at the nanometric scale,

influences numerous optical phenomena, such as electromagnetic field confinement and

spectral characteristics of plasmonic resonances. Here, we present a general phenomeno-

logical approach to account for nonlocal material polarizabilities in nanoscale metal particles.

The problem of nonlocal plasmonic resonances is formulated by an integro-differential

equation in a space domain and solved by adopting its weak form, implemented in the finite

element method, thus, dispensing with the requirements on additional boundary conditions.

As an example, nonlocal smearing effects in plasmonic nanorods of various cross sections and

nanotubes have been considered. Clear signature of nonlocality manifests itself in the

interference fringes in the potential profile and a significant frequency shift of the localized

surface plasmon resonances. These effects are especially important for nanoparticles with

geometrical features comparable to the de Broglie wavelengths of electrons participating in the light�matter interactions. The proposed method provides a

universal tool for phenomenological account of nonlocalities of any kind with the only requirement of linearity in system's response.
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be well understood in the framework of the hydro-
dynamic model, considering the electron system as
a charged fluid with certain average density and
velocity.8 The pressure terms in this model are propor-
tional to the gradient of the electron density and,
hence, give rise to nonlocalities. The resultingmodified
Ohm's law contains nonlocal contributions, propor-
tional to the Fermi velocity and can be used together
with the Maxwell's equations to describe electromag-
netic response.Other contributions tononlocal response
come from finite sizes of (quantum) wave functions
describing objects interacting with light. Quantum na-
ture of electronic system starts to manifest itself when
characteristic dimensions of confining potentials are
comparable with the coherence length of the electron
wavepacket (Figure 1a), which is roughly equal to the
electron de Broglie wavelength (or the Fermi wave-
length in metals). As an example, one can consider
excitons in semiconductors2 or electron density tail out-
side the metal object boundary.9 Thus, nonlocalities in
optical response of nanostructures could be of 'many-
body/hydrodynamic', 'quantum', or 'structural' origin or
of any combinations of the three.
Substantial theoretical and experimental progress

has recently been made in the investigations of non-
local contributions to optical response of metal nano-
structures. For example, 'structural' nonlocality in arrays
of strongly coupled wires or layers gives rise to strong
spatial dispersion,6,7,10,11 which cannot be described
by conventional effective medium models. Careful
inclusion of spatial dispersion effects is demanded
for description of various macroscopic effects, such as
hyperlensing12 or low frequency plasmonics.13 Further-
more, the predicted 'infinite' density of photonic states
in hyperbolicmetamaterials14may, in fact, be limitednot
only by finite dimensionality of a unit cell,15 but also due
to hydrodynamic-type of nonlocality.16

'Hydrodynamic' nonlocality can be straightforwardly
included within classical electromagnetic modeling, as
it directly depends on natural Maxwell's variables,
specifically, electric field and current. However, the
inclusion of the nonlocal Ohm's law imposes the
requirement of the additional boundary conditions
(the so-called 'ABC')1 which corresponds to zero cur-
rent outflowperpendicular to a boundary in the case of
a metal. The ABC depend on a particular system under
consideration.17 Taking into account these effects, the
first numerical solutions for nonlocal nanoparticle
resonances have been reported in McMahon et al.18

and shown remarkable differences in scattering cross
sections of particles of different shapes. Similar approach
has revealed the appearance of new types of plasmonic
resonances with strong signature of additional oscilla-
tions in their extinction.19 The comprehensive numer-
ical treatment of nonlocal effects in nanoparticles
within hydrodynamic model has also been recently
developed.20 The phenomenon of the hydrodynamic

nonlocality can also affect nanoplasmonic waveguid-
ing and focusing21�23 by effectively smearing sharp
geometrical features of metallic nanostructures.24

'Quantum' nonlocality in metals originates from the
electron Fermi wavelength, which is of the order of few
tenths of nanometer for noble metals.25 In this case,
particular attention has been paid to systems of coupled
metal particles, as they may lead to unrealistic local field
enhancement if been treated within the framework of
local electromagnetic theory. However, careful account
for quantum tunnelling on subnanometric scales (can
be considered as nonlocality in this context) well de-
scribes experimental observations of the enhancement
reduction.26 The effects of non-Markovian dynamics
of plasmonic resonances may also emerge as the result
of quantum behavior.27

The comprehensive theory of nonlocal contributions
to electromagnetic response of nanostructures is still
absent. Recent experimental observations show a need
for a nonlocal description of nanoparticle's optical prop-
erties since they cannot be explained by conventional
local theory. While much has already been done in this
respect, the universal tool to treat a nonlocal suscep-
tibility tensor of arbitrary type does not exist. Never-
theless, the most general response of a linear system
(either classical or quantum) can be described as an
integral of an excitation with a certain kernel (if vacuum
fluctuations are ignored). Unfortunately, analytical solu-
tions for electromagnetic scattering can only be found in

Figure 1. Schematic illustrating 'quantum' nonlocality: carrier
wave function size is comparable with confining potential
size. (b) Schematic illustrating the notion of nonlocal modal
volume: (red) confined opticalmode, (golden pattern) metallic
wedge with (blue) nonlocal electron response leading to the
redefined volume of the confining structure (green).
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the simplest geometrical configurations, such as spher-
oid or cylinder, for only some particular types of non-
locality.28,29 Hence, advanced numerical approaches are
required, especially, if optical properties of metals or
semiconductors are studied.
In this paper, we propose a universal phenomeno-

logical approach for treatment of localized surface
plasmons (LSPs) in spatially dispersivemedium, employ-
ing the weak form solution of characteristic integro-
differential counterpart of the Laplace equation. We
restrict the discussion to the nonlocalities emerging
frommaterial properties of individual nanoscale objects,
such as smallmetal particles. While previous approaches
were limited to treatment of scattering phenomena,
considering nonlocality in the Fourier domain with
bounded spectrum of plane waves, we developed full
eigenmodeanalysis, considering nonlocalities described
in the space-domain. Moreover, we succeeded to avoid
the need for the additional boundary conditions by
formulating the problem in the whole space domain
(not as a piecewise set of differential equations) and
demanding certain continuity relations on separating
boundaries. The example of smearing nonlocality in
various metal nanoparticles has been considered in
order to demonstrate the proposed approach.

RESULTS

Theoretical Framework. The general expression for
the material polarizability PB(rB) taking into account all
possible nonlocal effects is given by

PB(rB) ¼ ε0

Z
χ5r(rB, rB

0
)EB(rB

0
)d3rB

0
(1)

where χ5r (rB,rB0) is the nonlocal susceptibility tensor, ε0 is
the vacuum permittivity, and EB(rB0) is the electric field.
For the sake of simplicity, the time dependence in our
considerations is ignored as we deal with monochro-
matic fields in a linear regime. For bulk medium with
translational symmetry, the kernel integral of eq 1
reduces to the convolution, where the scenario of
χ5r (rB,rB0)∼ δ (rB�rB0) corresponds to a conventional local
material response.

To illustrate how nonlocality influences the confined
optical modes, we restrict the consideration to the
quasistatic regime when the retardation effects can be
ignored. Under this condition and including nonlocal
effects, the electromagnetic mode can be described by
themodified Laplaceequation for the electric potentialj:

r2jþr 3 (
Z

χ5r(rB, rB
0
)rBj(rB0)d3rB

0
) ¼ 0 (2)

Assuming a metallic particle embedded in a local di-
electric material (εd), we rewrite eq 2 as

r2jþr 3 (θ(rB)
Z
rB, rB

0∈Μ
χ5m(rB, rB

0
)rBj(rB0)d3rB0)

þr 3 ((1 � θ(rB))(εd � 1)rBj(rB)) ¼ 0 (3)

which reduces to the well-known expression in the case
of local materials:30

r 3 (θrBj) �
εd

(εd � εm)
r2j ¼ 0 (4)

where εm is the local dielectric constant of a metal. The
last term in eq 3 results from thematerial polarizability of
the surrounding medium and is responsible for creation
of the local polarization charge at the boundary of a
nanoparticle. This additional local contribution competes
with nonlocal response and may smear its signature. In
the casewhenanembeddingmedium is vacuum, the last
summand of eq 3 is zero.

It is possible to reformulate integro-differential eq 3
in the so-called weak form31 by multiplying it by an
arbitrary 'well-behaved' test functionΦ(rB), vanishing at
infinity, and integrating over entire space. The resulting
expression is
Z
V

[rj(rB)rΦ(rB)þθ(rB)rΦ(rB)
Z

rB, rB
0∈Μ

χ5m(rB, rB
0
)rBj(rB0)d3rB

0

þ ((1 � θ(rB))(εd � 1)rBj(rB))rΦ(rB)]d3rB ¼ 0 (5)

Any kernel χ5m(rB,rB0) corresponding to a given physical
effect (either 'many body/hydrodynamic', 'quantum' or
'structural') can be considered using eq 5. It can be
numerically solved using, e.g., finite element method
to find the potential. In particular, in the examples
below, the piecewise linear 'tent' (triangular) functions
have been used as the basis with the triangular nonuni-
form mesh.32

Equation 3 and its 'weak' form eq 5 describe a most
general response of a linear system and can be ana-
lyzed within our approach without any additional
assumptions. Phenomenological susceptibility tensor
includes all possible physical effects. In the particular
example described below, the geometrical aspects
(smearing) were considered; all other effects will show
off if appropriate susceptibility tensor is assumed. The
proposedmethod is a universal tool that could be used
for fitting any experimental data if sufficient amount
of 'phenomenology' is provided. It can be used in the
same way as one uses a standard phenomenological
susceptibility for describing a conventional electro-
magnetic response, without a need to consider micro-
scopic nature of susceptibility.

The Example of Smearing Nonlocality. As a proof of
concept, we have considered the effects of a smearing
nonlocality on LSP resonances. This type of nonlocality
is appropriate for description of delocalized electron
wave function and mostly influences nanostructures
with sharp geometrical features, thin layers or small
interparticle gaps.

First, we formulate a 'rule of thumb' to understand
when the smearing nonlocality affects optical response
of a nanostructure. For simplicity, we assume a two-
material-body problem: one (generally, optically denser
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and spatially dispersive) material, which confines an
optical mode, is surrounded by different 'local' materi-
al. We define a geometrical shape function θ(rB) equal
to 1 inside the confining material volume Ω (e.g., a
particle, a cavity or a waveguide) and 0 otherwise. The
modal volume inside the spatially dispersive material
can be then defined as

Vin(θ(rB)) ¼

Z
θ(rB) jE(rB) j 2d3rB

maxΩf jE(rB) j2g
(6)

This expression is different from the conven-
tional mode volume definition of Vin(θ(rB)) =R
V ε(rB)|E(rB)|2 d3rB/maxV{ε(rB)|E(rB)|2},33 since it is de-

signed to account for nonlocal effects taking place
inside the confining medium. Now, again assuming
material with translational symmetry, we define the
'smeared' shape function θ~(rB) =

R
θ(rB0)χ5r(rB � rB0) d3rB0/R

χ5r(rB0) d3rB0, which is the normalized convolution of the
geometrical shape function (initial confining potential)
with the space profile of the spatially dispersive sus-
ceptibility tensor. In the case of χ5r (rB,rB0) ∼ δ(rB�rB0),
there is no smearing due to nonlocal effects and θ = θ~,
as expected. We can then estimate the importance of
nonlocality for a particular material configuration in-
troducing the factor

η ¼ Vin(θ
~) � Vin(θ)
Vin(θ)

(7)

Whenever η ∼ 0, the nonlocal contributions are negli-
gible; otherwise, they should be taken into account. The
simple physical meaning of the nonlocality contribution
η is the relative spreading out of the confining potential
from the limit of its geometrical boundaries, weighted
with the field intensity of the mode (Figure 1b).

In the following, the nonlocal tensor has been taken
in a general Gaussian scalar form

χm(rB, rB
0
) ¼ (εhm � 1)

1

2πξ2
e�(rB � rB

0
)2=2ξ2 (8)

where ξ is the effective radius of nonlocality, mimick-
ing the measure of distance at which the fields in
two points are correlated via the material response
(e.g., delocalized electronwave function). The dielectric
function εhm(ω) generally differs from the local dielec-
tric function εm of a bulk material and may depend on
all parameters of the system. It can be obtained from
microscopic or ab initio calculations taking into ac-
count hydrodynamic and/or quantum effects in nano-
particles of finite size.

For example, the theoretical model, used in
the description of the recent experiments on size-
dependent LSP spectral shift, adopts the approach of
'quantum particles in a box'. The confining potential
has infinite barriers, coinciding with the boundaries
of the particle. As the result of this semianalytical

approach, the effective 'local' permittivity of the particle
is derived and subsequently substituted into the classi-
cal Mie theory, which predicts the blue shift of the
LSP resonances with the decrease of particle's radius,
supporting electron energy-loss spectroscopy (EELS)
measurements.34 While this 'local' model of nonlocality
with the local permittivity εhm(ω) renormalized by quan-
tum effects describes well the experimental data, it
makes several crucial assumptions which could be
relaxed with our universal approach. In particular, many
body effects in the metal's electron plasma limit the
electron coherence to the Fermi wavelength, which is
almost 1 order ofmagnitude smaller than dimensions of
the confining potential (i.e., the particle's boundaries).
While the 'particle in a box' model assumes the infinite
coherence length, the smearing form of eq 8 takes into
account (phenomenologically) themany-body contribu-
tion. In addition, the usage of effective local permittivity
ignores the coupling of nonlocal effects with external
electromagnetic excitation (illumination), while the
general form of eq 3 formulates the problem self-
consistently. Similarly, density functional theories35

enable one to evaluate dielectric properties of clusters
(renormalized εhm(ω)) but do not provide a self-consis-
tent electromagnetic formulation.

It needs to be emphasized that the 'corrected' εhm
(eq 8) is a local parameter and does not explicitly
depend on the coordinates. The example of the smear-
ing effects emphasizes the direct impact of nonlocality
in self-consistent electromagnetic formulation and is
not universal physical model, while, the most general
kernel in eq 3 (not limited to the convolution) can be
used in the framework of the proposed formalism
without the introduction of a renormalized permittiv-
ity. In the case of smearing nonlocality (eq 8), the
potential profiles calculated with eq 5 do not depend
on the value of the modified dielectric constant (εhm),
as they are the eigenfunctions in this formulation.
However, the spectrum of the eigenvalues {εhm} deter-
mines specific frequencies of LSP resonances viamaterial
dispersion and the correction model for εhm.

Quasistatic LSP resonances, being treated in the
framework of the local Laplace equation, are indepen-
dent of the overall particle size. The radiative losses are
negligible for small particles (less than 20 nm radius for
silver spheres). Hence, it is convenient to define certain
dimensionlessmeasure of nonlocality in the quasistatic
regime, ξ/R, whereR is the critical sizeof thenano-object.
It shouldbenoted that, for simple shapes, thismeasure is
strictly related to the more general one defined by eq 7:
e.g., η∼ [1þ (ξ/R)]3� 1∼ 3(ξ/R) for a dipolar resonance
of a nanosphere and η ∼ [1 þ (ξ/R)]2 � 1∼ 2(ξ/R) for a
nanocylinder. For fixed nonlocality, this measure will
become larger for smaller sizes of the objects. From
practical point of view, the nonlocality radius is dictated
by material properties, while the particle size can be
controlled by fabrication. The increase of the nonlocality
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measure ξ/R corresponds to the increase of the non-
locality contribution to the optical properties, i.e., the
increase in η.

Equation 3, being formulated as the eigenvalue
problem, enables estimation of the resonance shift
with the introduction of a nonlocality. Since the LSP
resonance has purely geometrical origin in quasistatic
approximation, the resonant conditions are realized
for certain values of εhm, regardless of particular mate-
rial components. Actual resonance frequency is deter-
mined by a particular material dispersion. For example,
Re(εhm) =�2 and Re(εhm) =�1 are the dipolar LSP reso-
nance conditions for sphere and cylinder, respectively,
in vacuum, if local response is assumed with the
renormalized by nonlocality εhm(ω). Material and radia-
tion losses, not entering the eigenvalue problem, will
define quality factors of the resonances. Specific values
of εhm could be further related to εm and resonant
frequencies via specific correction models, as dis-
cussed above.

In the following, the smearing nonlocality was
investigated in 3 different types of nanoparticles:
nanocylinders with circular and concave cross sections
and nanotubes.

Nonlocal Plasmonic Nanocylinder. The potential (j)
profiles calculated using eq 5 for dipolar LSP reso-
nances in the cylinder of a circular cross section are

presented in Figure 2 for several nonlocality measures
ξ/R, where R is the radius of the cylinder. In the local
approximation (Figure 2a), the potential has a smooth
profile as expected from the classical Laplace equation
in piecewise continuous domain. The introduction of
nonlocality (cf. eq 3 and eq 4) dramatically changes the
potential profile which exhibits oscillatory behavior
across the cylinder. Physically, these potential fringes
correspond to the electron interference in the metal
particle, while phenomenologically, as considered
here, result from the 'memory' function (the integral
operator in eq 3) which prevents the fast changes in
the potential and, thus, causes oscillations. Remark-
ably, the number of fringes within the circular cross
section is determined by the inverse nonlocality mea-
sure R/ξ. When the nonlocality measure reaches the
critical point of 50%, the fringes disappear (Figure, 1d)
as electrons are effectively shared within the whole
particle.

Figure 4 shows the evolution of the LSP resonance
condition as the nonlocality measure varies. It is re-
markable that in the presence of smearing, the reso-
nant values of εhm become more negative when
nonlocality measure increases. This implies the red-
shift contribution to the LSP spectral position with
the decrease of the particle's radius and means that
the smearing nonlocality is the competing mechanism

Figure 2. Potentialjmap for the dipolar LSP resonance of a plasmonic nanocylinder with circular cross section (shown in the
inset) for different nonlocality measures ξ/R: (a) local model (ξ/R = 0), (b) 0.1, (c) 0.2, and (d) 0.5. The color scale is the same for
all images.
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to the other nonlocalities34 which tend to blue-shift the
resonance.

In the case of dark plasmonic modes, e.g., quad-
rupolar LSP, it could be intuitively understood that the
smearing nonlocality may have even more significant
influence on the resonance shifts. They exhibit faster
variation of a spatial profile of the potential inside the
metal nanoparticles in contrast to the dipolar mode of
nanospheres and nanocylinders which has uniform
field and linear potential inside metal.

Nonlocal Plasmonic Nanoparticle with Sharp Corners.

In contrast to particles with smooth convex cross
sections, concave particles, which may provide any on
demand spectrum,36 could exhibit more complex non-
local behavior as they possess sharp corners where
critical dimensions become very small and comparable
to the nonlocality radius even if the overall size of the
particle may be larger. We can coin this scenario by the
term “locally induced nonlocal effects”, when the optical
response of large particle can be dictated by small sharp
features of its geometry where the electromagnetic
mode is localized. We will consider a cylinder with the
concave cross section (Figure 3) formed by differentia-
tion of a circle of radius 2 with 2 circles of radius 1,
symmetrically shifted by the distance of 1.5 (all the
radii are normalized). The effect of different measures
of nonlocalities was modeled, and the interference
patterns in the potential for the fundamental dipolar

resonance were observed. In this more complex sce-
nario, the interference fringes exist even for large non-
locality measures, in contrast to the smooth convex
circular cross section particles, and are the manifesta-
tion of existence of multiple boundaries of the particle.
Electric field, being determined by the gradient of the
potential, is very sensitive to the oscillations of the
potential. The consideration of the potential variations
near the sharp corners allows predicting reduction of
the local fields. The LSP resonance shift due to the
smearing nonlocality is shown in Figure 4. The actual
LSP resonances of concave particles are also red-shifted
with respect to the convex ones, as was demonstrated
both theoretically and experimentally.37

Nonlocal Plasmonic Nanotube. Plasmonic nano-
shells and nanotubes with extremely thin metal layers
of the order of few nanometers have recently been
fabricated and are important for numerous applica-
tions. Nanoshell's optical properties are advantageous
for gene silencing,38 enhanced Raman spectroscopy,39

nanomedicine,40 low-energy water heating,41 achieving
magnetic responses at optical frequencies,42,43 to name a
few. Nanotubes are beneficial for efficient biosensing,44

photovoltaics, and nonlinear nano-optics, and sensing
applications.45

For such layered nanostructures, the electron Fermi
wavelength may become comparable with critical
structural dimensions, thin shell layers or small cores,

Figure 3. Potentialjmap for the dipolar LSP resonanceof a plasmonic nanocylinderwith concave cross section (shown in the
inset) for different nonlocality measures ξ/R: (a) local model (ξ/R = 0), (b) 0.1, (c) 0.2, (d) 0.4, (e) 0.5, and (f) 1. The concave cross
section is formed by differentiation of circle of a normalized radius 2 with 2 circles of radius 1, symmetrically shifted by the
distance of 1.5. The color scale is the same for all images.
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giving rise to strong nonlocal effects. In the following,
we investigate 'bonding' and 'antibonding' reso-
nances46 of a metal nanotube corresponding to paral-
lel and antiparallel dipoles induced at outer and inner
boundaries, respectively, by varying either overall di-
ameter of a nanotube, keeping the ratio between inner
and outer radii constant, or fixing the outer radius
and varying the thickness of the tube wall (Figure 5).
Similar geometries were recently used for studies of
hydrodynamic nonlocalities in applications to refrac-
tive index sensing.47

First, we consider the tube with the ratio of outer
and inner radii of 2:1.5 and vary the diameter. The
dependence of the resonance position on the non-
locality measure is presented in Figure 5. The res-
pective potential maps are shown in the insets.
Remarkable negative shifts of εhm occur for the LSP in
nanotubes due to the nonlocal effects, as the electric
field penetrates more into the metal shell. While for
'antibonding' mode the field drops substantially inside
the tube, it becomes smaller on the outside for the
'bonding' resonance. Moreover, since the 'antibonding'
mode supports much faster changes of the electric
potential inside the tube walls (surface charge changes
sign from outer to inner boundary in the local regime),
the associated resonance shifts faster as the nonlocality
smear out the field gradients. The results presented in
Figure 5 predict the increase of the field inside the tube
for the bonding resonance, while the opposite behavior
takes place for the antibondingmode, forwhich the field
is pushed away from the core with the increase of the
nonlocality measure.

The nanotube has two key geometrical dimensions,
giving rise for nonlocal contributions: wall thickness
and core radius. Either thin walls or small core compar-
able with the Fermi wavelength will contribute to
the nonlocal modification of the optical response. For
the nanotube with the fixed outer radius of 20 nm, the
inner radius has been varied in the range from 19 nm

(very thin walls) to 6 nm (very small core). The nano-
tubes with similar dimensions can routinely be
fabricated.48 The parametric plots of the LSP resonant
conditions (for εhm) for the 'antibonding' mode, which is
more influenced by the nonlocal effects, are presented
in Figure 6 for both local and nonlocal scenarios. We
used ξ = 1nmwhich is of the same order of magnitude
as for noble metals. The resonant condition for this
mode in the local regime, obtained with the use of
Laplace equation, is εm = �[(Rin þ Rout)/(Rout � Rin)] if
embedded in vacuum. This dependence perfectly co-
incides with the numerical simulations implemented
using eq 6. The results summarized in Figure 6 show
that the local LSP position approaches the nonlocal
one with the increase of the wall thickness from 1 to
10 nm, as the radius of nonlocality becomes less than
the wall width. At the same time, with reduction of
the inner radius, the tube core becomes smaller,

Figure 4. Parametric dependence of the resonant condi-
tions for dipolar LSP resonance of a circular cross section
cylinder (blue circles, dashed line) and a concave cross
section cylinder (green rectangles, dotted line) on the
nonlocality measure. Symbols are numerical simulations,
and lines are guide for eye.

Figure 5. Parametric dependence of the resonant conditions
for 'bonding' (blue circles, dashed line) and 'antibonding'
(green rectangles, dotted line) LSP resonancesof thenanotube
on the nonlocality measure. Symbols are numerical simula-
tions, and lines are guide for eye. The numbered insets show
the potential j profiles for different nonlocality measures.

Figure 6. Parametric dependence of the resonant conditions
for 'antibonding' LSP resonance of the nanotube on the inner
radius (the outer radius is fixed to 20 nm): (blue diamonds,
solid line) nonlocality with ξ = 1 nm, (green circles) without
nonlocality. Symbols are numerical simulations, and lines are
guide for eye. Potential j profiles for several nanotube
parameters are shown in the inset.
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approaching size where the nonlocality starts to con-
tribute again. This is the reason of the crossing point in
the resonant conditions between local and nonlocal
descriptions and subsequent significant dissimilarity
with continuing decrease of the inner radius.

DISCUSSION

The universal approach formulated with eq 3 en-
ables to account for nonlocality of any type. Smearing
effects introduced by eq 8 are particular example of
nonlocal response and their manifestation in optical
properties strongly depends on considered physical
system. In the case of convex particles with simple
shapes (e.g., sphere, cylinder or disk), the smearing
effects are less pronounced and compete with the
permittivity changes due to other, e.g., finite size, effects.
The overall result, according to the recent experimental
observation,34 will be a blue-shift of the LSP resonances
with the decrease of the particle's dimensions.
The scenario of two closely situated tunnelling-

coupled particles exhibits different behavior with the
red shift of the LSP resonances. The smearing non-
locality is of particular significance for this scenario as the
interaction is determined by the small gap between the
particles. Hydrodynamic model was employed in order
to describe the electron smearing in the tunnelling
regime andpredicted the red shift of the LSP resonances
with the decrease of the tunnelling gap (i.e., the increase
of the nonlocality measure ξ/R).49,50 Hydrodynamic
model enables to produce qualitative predictions using
compact and universal (yet phenomenological) formu-
lation. It introduces the nonlocality in the form of the set
of coupled differential equations and enables to keep
both the material and electromagnetic properties to-
gether. It was recently shown by Mortensen et al. that
this set of equations canbe recast eitherwith theGreen's
functions51 or operator52 approaches.
It should be noted, however, that several assump-

tions on quantum pressure term were made in Eguiluz
and Quinn8 in order to represent the hydrodynamic
model in compact and numerically solvable form. The
hydrodynamic equations rely only on the gradient term
which introduces nonlocality via the information on
the closest neighbor. This implies that the nonlocal
approach developed by Eguiluz and Quinn8 cannot be
directly related to themodel we presented above, as our
model depends on the collective response from the
certain surrounding and not just on the closest points in
the virtual grid. The direct comparison between hydro-
dynamicmodel and our approach is not straightforward
as it would involve the knowledge on the overall field in
a particular system that needs to be solved first.

CONCLUSION

We have developed a new approach that enables
investigations of localized surface plasmon resonances
of linear systems with a general nonlocal susceptibility

tensor. An integro-differential equation describing
nonlocal electromagnetic properties has been solved
numerically by adopting its weak form.
Considering the example of smearing nonlocality,

we have formulated the criterion to estimatewhenever
this phenomenon influences optical responses of nano-
structures. Clear signature of the smearing nonlocality
has been observed as the interference fringes in the
potential profile of the localized plasmonic excitations.
The investigations of nanocylinders and nanotubes
with various cross sections leads to the conclusion
that smearing has significant influence on LSP position,
shifting the resonances, as characteristic features of
the objects approach nonlocality radius determined by
the de Broglie wavelength of carriers interacting with
electromagnetic field. It is also shown that other types
of nonlocalities, which may result in renormalization
of the nano-object's permittivity with respect to bulk
material permittivity, need to be simultaneously con-
sidered to explain the experimental observations.
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