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Nonlocal ponderomotive nonlinearity
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We analyze an inherent nonlinearity of surface plasmon polaritons at the interface of Fermi–Dirac metal
plasma, stemming from the depletion of electron density in high-intensity regions. The derived optical
nonlinear coefficients are comparable with the experimental values for metals. We calculate the dispersion
relations for the nonlinear propagation of high-intensity surface plasmon polaritons, predicting a
nonlinearity-induced cutoff and vanishing group velocity. © 2010 Optical Society of America
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Plasmonic nanocircuits present promising solutions
for on-chip interconnect and have gained consider-
able interest recently [1,2]. The subdiffraction light
confinement by surface plasmon polaritons (SPPs)
[3,4] paves the way for efficient nonlinear interac-
tions and sensing [5]. Plasmonic structures are used
as building blocks for metamaterials with a negative
index of refraction [6]. In the linear regime, behavior
of the SPP on a single metal–dielectric interface is
well known [7,8], while the nonlinear regime of plas-
monic waveguides [9,10] is still not fully explored. In
general, metal nonlinearities may stem from several
physical effects. In metal nanoparticles [11] the most
significant contribution to the nonlinear response is
attributed to the limited volume of the particle [12],
while in bulk metals this effect does not exist [13].
However, bulk metals, which serve as the key me-
dium for SPP guiding, are inherently nonlinear.
These nonlinearities may induce dramatic changes in
device performance [14] and should be considered in
plasmonic circuitry modeling [15] and in the analysis
of SPP localization [16], as well as for practical appli-
cations such as optical delays [17]. Previously studied
nonlinear effects in bulk metals are related to the
saturation of interband transitions [18] that are
wavelength dependent, and hot-electron contribution
[19] related electron–electron scattering rate change
[20].

Here we present a nonlocal metal nonlinearity,
originating from a collective ponderomotive interac-
tion of charged particles, where the charge carriers
are repelled from the high-field intensity region,
making the dielectric constant � average-intensity
dependent. We develop a theoretical model for the
ponderomotive nonlinearity and its effect on basic
SPP propagation, resulting in intensity-dependent
SPP light slowing and propagation cutoff. This pon-
deromotive nonlinearity, stemming from the equation
of motion in metals, is present in plasmonics even far
from interband transition wavelengths [21].

To model the dependence of metal dielectric coeffi-
cient �M on the field intensity, we calculate the modi-
fication of charge carrier density by the nonlocal pon-

deromotive (Gaponov–Miller) force given by [22–24]
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where e and m are the electron charge and mass, � is
the light angular frequency, and E� �r�� is the local field
amplitude. The force can be recast in a simpler form
FPM� =−1/2m�e /��2� ��E�r���2�, and the corresponding
ponderomotive potential is

�PM�r�� = e2�E�r���2/2m�2. �2�

The carrier density in dilute plasma physics is de-
rived by applying Maxwell–Boltzmann distribution
for the ponderomotive potential [25,26]. Here we ap-
ply the Fermi–Dirac electron distribution suitable for
metals in quasi-equillibrium, resulting in the follow-
ing carrier density:
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where Ef is the Fermi energy assumed to be located
deep within the band, such that zero temperature
approximation for the distribution is applicable.
The resulting intensity-dependent metal–dielectric
constant is
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For realistic field intensities the leading term in
Taylor series yields a Kerr-like nonlinearity:
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where �p is the plasma frequency for low intensity, �0

is the vacuum permittivity, �M is the linear part of
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the metal dielectric constant, and �PM is the nonlin-
ear ponderomotive susceptibility. This Kerr-like coef-
ficient is highly dispersive ��1/�4� and for telecom
wavelengths is on the order of �PM�10−18 m2/V2,
comparable with that of nonlinear glasses.

We study the nonlinear propagation effects due to
the ponderomotive potential in the most basic struc-
ture supporting SPPs, namely, a single metal–
dielectric interface. The nonlinear dispersion rela-
tions were extracted by several methods. The first is
a crude effective index approach, using the nonlinear
term for the SPP dispersion:

� =� �D�PM

�D + �PM
, �6�

where �D is the dielectric constant of the substrate,
substituting the nonlinear �PM from Eq. (5). Equation
(6) does not represent the accurate nonlinear disper-
sion; however, it yields a qualitative description,
which is refined by the exact quantitative models be-
low. An intuitive explanation of the nonlinear effects
is related to the electron depletion in high-intensity
regions near the metal–air interface. As a result of
the depletion, the metal–dielectric constant near the
interface approaches the critical value of �PM=−�D,
increasing the effective index (Fig. 1 dashed red
curve). Since SPP power propagation directions in
the dielectric and in metal are opposite, a correspond-
ing nonlinear SPP cutoff is reached when the
intensity-induced mode reshaping results in exactly
equal, but opposite, power flow in metal and dielec-
tric.

The second modeling method consistently extracts
the nonlinear dispersion relations from the appropri-
ate nonlinear Maxwell’s equations and boundary con-
ditions taking into consideration the full spatial
dependence of the field, however, without deriving
the latter explicitly [27,28]. We assert here that

Fig. 1. (Color online) Nonlinear effective index �NL, nor-
malized by the low-intensity linear effective index �L ver-
sus the electric field magnitude in the metal at the air–gold
interface for wavelength of 1.5 
m calculated by: effective
index method (dashed red curve), scalar dispersion equa-
tion (dashed–dotted black curve) and the full vectorial

method (solid blue curve).
Ez�x��Ex�x�, such that propagation of a single domi-
nant component E field is considered. The resulting
nonlinear dispersion relation is
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where Ez�0� is the magnitude of the electrical field
phasor on the interface. This method is expected to
be inaccurate near the modal cutoff point—where the
magnitude of both field components is comparable;
however, below this point it agrees with the following
exact model (Fig. 1).

Finally, a full vectorial method was applied [29]
(beyond the approximation of Ez�x��Ex�x�), yielding
the exact dispersion relation as coupled nonlinear
equations:
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where � and Ex�0� are the respective effective index
and x component of the electrical field phasor ampli-
tude on the interface, while Ez�0� is related to a sur-
face intensity parameter by Eav

2=Ex
2�0�+Ez

2�0�.
The effective indices calculated by the three meth-

ods are depicted in Fig. 1 versus the field magnitude
�Ez�0�� on a gold–air interface at 	=1.55 
m. All the
effective indices exhibit an intensity cutoff, while the
first two approximated methods underestimate the
intensity required for the cutoff. The group-velocity
reduction, evident from the full-fledged calculation of
the nonlinear dispersion relations in Fig. 2, is shown
explicitly as the group index in Fig. 3. The fields re-
quired for the effects described here are relatively
high; however, for high fields and depleted metal
plasma the SPP resonance becomes much closer to
the telecom wavelength range making the normal
and the tangential components of the electric field
comparable with similar values on both sides of the
interface—metal and air. Such field magnitudes
��1010 V/m�, although close to the ionization dam-
age threshold, were recently used to predict the spec-
tral phase interferometry for the direct electric-field
reconstruction effect [30] and achieved experimen-
tally in bow-tie antenna configuration for high-
harmonic generation [31]. It was also shown [32] that
the thermal damage threshold intensity in bulk ma-
terial is much higher than that of small particles

[31]. The proposed experiments in this regime should
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be performed with low-duty-cycle short-pulse lasers
in order to avoid any material damage.

In conclusion, we have analyzed a metal nonlinear-
ity due to the ponderomotive force, which repels
charge carriers from high-field intensity regions and
introduced its effect on the metal susceptibility,
which can be described approximately as a dispersive
Kerr-like effect, with magnitudes similar to that of
nonlinear glasses. The propagation of a single-
surface nonlinear SPP was studied, and the exact
nonlinear dispersion curve was derived analytically.
The cutoff and slow-light features of the nonlinear
dispersion were explained.

Fig. 2. (Color online) Nonlinear dispersion relation of a
single-surface SPP on air–gold interface at different inter-
face electric field amplitudes: dashed blue, 12 GV/m; red
circles, 11.5 GV/m; black crosses, 11 GV/m; green dia-
monds, 10.5 GV/m; brown triangles, 10 GV/m; purple
stars, 9.5 GV/m. The inset is the nonlinear effective index
normalized by the linear one versus the wavelength and
field amplitude.

Fig. 3. (Color online) Group index versus wavelength at
different electric field amplitudes: dashed blue, 12 GV/m;
red circles, 11.5 GV/m; black crosses, 11 GV/m; green dia-
monds, 10.5 GV/m; brown triangles, 10 GV/m; purple
stars, 9.5 GV/m. The inset is the nonlinear group index
normalized by the linear one versus the wavelength and

field amplitude.
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